AskDefine | Define breather

Dictionary Definition



2 air passage provided by a retractable device containing intake and exhaust pipes; permits a submarine to stay submerged for extended periods of time [syn: snorkel, schnorkel, schnorchel, snorkel breather]

User Contributed Dictionary




  1. Something or someone that breathes.
  2. A short break; a rest or respite.
    After a short breather she was ready to continue up the hill.

Extensive Definition

A breather is a nonlinear wave phenomenon in which energy concentrates in a localized and oscillatory fashion. This contradicts with the expectations derived from the corresponding linear system for infinitesimal amplitudes, which tends towards an even distribution of initially localized energy.
A discrete breather is a breather solution on a nonlinear lattice.
The term breather originates from the characteristic that most breathers are localized in space and oscillate (breath) in time. But also the opposite situation: oscillations in space and localized in time, is denoted as a breather.


A breather is a localized periodic solution of either continuous media equations or discrete lattice equations. The exactly solvable sine-Gordon equation are examples of one-dimensional partial differential equations that possess breather solutions. Discrete nonlinear Hamiltonian lattices in many cases support breather solutions. Breathers are solitonic structures. There are two types of breathers: standing or traveling ones. Standing breathers correspond to localized solutions whose amplitude vary in time (they are sometimes called oscillons). A necessary condition for the existence of breathers in discrete lattices is that the breather main frequency and all its multipliers are located outside of the phonon spectrum of the lattice.

Example of a breather solution for the sine-Gordon equation

The sine-Gordon equation is the nonlinear dispersive partial differential equation
\frac - \frac + \sin u = 0,
with the field u a function of the spatial coordinate x and time t.
An exact solution found by using the inverse scattering transform is is the dispersive partial differential equation:
i\,\frac + \frac + |u|^2 u = 0,
with u a complex field as a function of x and t. Further i denotes the imaginary unit.
One of the breather solutions is
u = \left( \frac - 1 \right)\; a\; \exp(i\, a^2\, t) \quad\text\quad \theta=a^2\,b\,\sqrt\;t,
which gives breathers periodic in space x and approaching the uniform value a when moving away from the focus time t = 0. These breathers exist for values of the modulation parameter b less than √ 2.

References and notes

Synonyms, Antonyms and Related Words

athletics, blow, break, breath, breathing place, breathing space, breathing spell, breathing time, calisthenics, cigarette break, cocktail hour, coffee break, constitutional, daily dozen, downtime, drill, enforced respite, exercise, exercising, gymnastic exercises, gymnastics, halt, happy hour, interlude, intermission, isometrics, letup, lull, pause, physical education, physical jerks, practice, recess, respite, rest, setting-up exercises, spell, stay, stretch, surcease, suspension, tea break, ten, time out, workout, yoga
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1